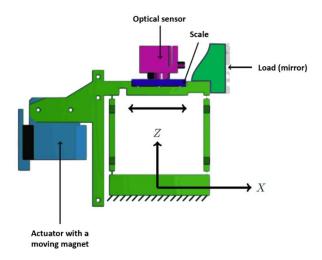
Exercise set 9 - Control


Exercise 1

Consider a motor with a torque constant k_t , a reducer with a reduction ratio n=32 and an incremental encoder with 500 quadrature increments (i.e. 500×4 pulses per revolution). The motor is tuned with a PD position controller at a sampling rate of 1 kHz. J_m and J_t are the respective moments of inertia of the motor and of the driven load.

- 1. Give the resolution in position (in degrees) at the load level.
- 2. The speed is obtained by numerical differentiation. Give the resolution in speed if we calculate the derivative over:
 - (a) one sampling period.
 - (b) two sampling periods.
- 3. The backlash of the reducer is approximately 0.1°. Is this acceptable? If not, what can be done to solve the problem?
- 4. As a function of the controller gains K_p and T_d (according to the expressions in the course), determine the quantization noise on the control current.
- 5. Determine the smallest manageable displacement due to this calculated current resolution. **Hint:** Consider the relationship between input current and output position based on system dynamics.

Exercise 2

Consider the following flexure hinge-based guide actuated by a current-controlled DC motor.

Let:

- k_f be the force constant between the active generated force and the motor current.
- m_g be the equivalent mass of the flexure hinge guide.
- m_l be the mass of the load (mirror and support).
- k_s be the equivalent stiffness of the leaf spring hinges.
- 1. (a) Give the transfer function current displacement.
 - (b) Determine the shape of the position response to a current step.
- 2. The actuator is looped with a PD controller. Make a block diagram of the closed loop with this controller.
- 3. (a) Give the expression of the new closed loop transfer function.
 - (b) Identify the meaning of each coefficient of this transfer function. (We'll consider a step input we want to reach a constant desired position x_d , i.e. $\frac{dx_d}{dt} = 0$)